Selective oxidation and reduction of methionine residues in peptides and proteins by oxygen exchange between sulfoxide and sulfide.
نویسنده
چکیده
Treatment of amino acids, peptides, and proteins with aqueous solution of dimethyl sulfoxide (Me2SO) and hydrochloric acid (HCl) resulted in the oxidation of methionine to methionine sulfoxide. In addition to methionine, SH groups are also oxidized, but this reaction proceeds after a lag period of 2 h. Other amino acids are not modified by aqueous Me2SO/HCl. The reaction is strongly pH-dependent. Optimal conditions are 1.0 M HCl, 0.1 M Me2SO, at 22 degrees C. The reaction exhibits pseudo-first order kinetics with Kobs = 0.23 +/- 0.015 M-1 min-1 at 22 degrees C. Incubation of methionine sulfoxide with dimethyl sulfide and HCl resulted in the conversion of methionine sulfoxide to methionine. This reaction is fast (t1/2 = 4 min at room temperature) and quantitative at relatively anhydrous condition (i.e. at H2O:concentrated HCl:dimethyl sulfide ratio of 2:20:1). Quantitative conversions of methionine sulfoxide back to methionine are obtained in peptides and proteins as well, with no observable other side reactions in amino acids and proteins. The wide applications of this selective oxidation and reduction of methionine residues are demonstrated and discussed.
منابع مشابه
Methionine sulfoxide reductase A is a stereospecific methionine oxidase.
Methionine sulfoxide reductase A (MsrA) catalyzes the reduction of methionine sulfoxide to methionine and is specific for the S epimer of methionine sulfoxide. The enzyme participates in defense against oxidative stresses by reducing methionine sulfoxide residues in proteins back to methionine. Because oxidation of methionine residues is reversible, this covalent modification could also functio...
متن کاملMethionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils.
Reactive oxygen intermediates generated by neutrophils kill bacteria and are implicated in inflammatory tissue injury, but precise molecular targets are undefined. We demonstrate that neutrophils use myeloperoxidase (MPO) to convert methionine residues of ingested Escherichia coli to methionine sulfoxide in high yield. Neutrophils deficient in individual components of the MPO system (MPO, H(2)O...
متن کاملRedox proteomics of protein-bound methionine oxidation.
We here present a new method to measure the degree of protein-bound methionine sulfoxide formation at a proteome-wide scale. In human Jurkat cells that were stressed with hydrogen peroxide, over 2000 oxidation-sensitive methionines in more than 1600 different proteins were mapped and their extent of oxidation was quantified. Meta-analysis of the sequences surrounding the oxidized methionine res...
متن کاملMethionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli.
In proteins, methionine residues are primary targets for oxidation. Methionine oxidation is reversed by methionine sulfoxide reductases A and B, a class of highly conserved enzymes. Ffh protein, a component of the ubiquitous signal recognition particle, contains a methionine-rich domain, interacting with a small 4.5S RNA. In vitro analyses reported here show that: (i) oxidized Ffh is unable to ...
متن کاملSelenium and Methionine Sulfoxide Reduction.
Selenium is an essential trace element because it is present in proteins in the form of selenocysteine residue. Functionally characterized selenoproteins are oxidoreductases. Selenoprotein methionine-R-sulfoxide reductase B1 (MsrB1) is a repair enzyme that reduces ROS-oxidized methionine residues in proteins. Here, we explored a possibility that reversible methionine oxidation is also a mechani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 261 1 شماره
صفحات -
تاریخ انتشار 1986